
SNS and SQS

SNS

producer sends notification to a topic.

This topic can fan out messages to http/email/sqs-queues/lambda

Amazon Simple Notification Service (Amazon SNS) is a web service that
coordinates and manages the delivery or sending of messages to subscribing
endpoints or clients. In Amazon SNS, there are two types of clients—publishers
and subscribers—also referred to as producers and consumers. Publishers
communicate asynchronously with subscribers by producing and sending a message
to a topic, which is a logical access point and communication channel.
Subscribers (that is, web servers, email addresses, Amazon SQS queues, AWS
Lambda functions) consume or receive the message or notification over one of
the supported protocols (that is, Amazon SQS, HTTP/S, email, SMS, Lambda) when
they are subscribed to the topic.

When using Amazon SNS, you (as the owner) create a topic and control access to
it by defining policies that determine which publishers and subscribers can
communicate with the topic. A publisher sends messages to topics that they have
created or to topics they have permission to publish to. Instead of including a
specific destination address in each message, a publisher sends a message to
the topic. Amazon SNS matches the topic to a list of subscribers who have
subscribed to that topic, and delivers the message to each of those
subscribers. Each topic has a unique name that identifies the Amazon SNS
endpoint for publishers to post messages and subscribers to register for
notifications. Subscribers receive all messages published to the topics to
which they subscribe, and all subscribers to a topic receive the same messages.

SQS
Requests: send receive and delete

100.000 free requests every month and then pay 1$/million

backlog 14 days

 A producer (component 1) sends message A to a queue, and the message is
distributed across the Amazon SQS servers redundantly.

 When a consumer (component 2) is ready to process messages, it consumes
messages from the queue, and message A is returned. While message A is being
processed, it remains in the queue and isn't returned to subsequent receive
requests for the duration of the visibility timeout.

 The consumer (component 2) deletes message A from the queue to prevent the
message from being received and processed again when the visibility timeout
expires.

Note
Amazon SQS automatically deletes messages that have been in a queue for more
than maximum message retention period. The default message retention period is
4 days. However, you can set the message retention period to a value from 60
seconds to 1,209,600 seconds (14 days) using the SetQueueAttributes action.

Q: How is Amazon SQS different from Amazon SNS?

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html

Amazon SNS allows applications to send time-critical messages to multiple
subscribers through a “push” mechanism, eliminating the need to periodically
check or “poll” for updates. Amazon SQS is a message queue service used by
distributed applications to exchange messages through a polling model, and can
be used to decouple sending and receiving components.

Q: Does Amazon SQS provide message ordering?

Yes. FIFO (first-in-first-out) queues preserve the exact order in which
messages are sent and received. If you use a FIFO queue, you don't have to
place sequencing information in your messages. For more information, see FIFO
Queue Logicin the Amazon SQS Developer Guide.

Standard queues provide a loose-FIFO capability that attempts to preserve the
order of messages. However, because standard queues are designed to be
massively scalable using a highly distributed architecture, receiving messages
in the exact order they are sent is not guaranteed.
Q: Does Amazon SQS guarantee delivery of messages?

Standard queues provide at-least-once delivery, which means that each message
is delivered at least once.

FIFO queues provide exactly-once processing, which means that each message is
delivered once and remains available until a consumer processes it and deletes
it. Duplicates are not introduced into the queue.

FIFO (First-In-First-Out) queues are designed to enhance messaging between
applications when the order of operations and events is critical, or where
duplicates can't be tolerated, for example:

 Ensure that user-entered commands are executed in the right order.
 Display the correct product price by sending price modifications in the right

order.
 Prevent a student from enrolling in a course before registering for an

account.
FIFO queues also provide exactly-once processing but have a limited number of
transactions per second (TPS):

 By default, FIFO queues support up to 3,000 messages per second, per API
action (SendMessage, ReceiveMessage, or DeleteMessage), with batching. To
request a limit increase, file a support request.

 FIFO queues support up to 300 messages per second, per API action
(SendMessage, ReceiveMessage, or DeleteMessage) without batching.

Note
The name of a FIFO queue must end with the .fifo suffix. The suffix counts towards
the 80-character queue name limit. To determine whether a queue is FIFO, you can
check whether the queue name ends with the suffix.

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-sqs
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-batch-api-actions.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html#FIFO-queues-exactly-once-processing
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html#FIFO-queues-understanding-logic
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html#FIFO-queues-understanding-logic

